Developmental expression of nitric oxide/cyclic GMP synthesizing cells in the nervous system of Drosophila melanogaster.
نویسندگان
چکیده
Nitric oxide (NO) is a membrane-permeant signaling molecule which activates soluble guanylyl cyclase and leads to the formation of cyclic GMP (cGMP). The NO/cGMP signaling system is thought to play essential roles during the development of vertebrate and invertebrate animals. Here, we analyzed the cellular expression of this signaling pathway during the development of the Drosophila melanogaster nervous system. Using NADPH diaphorase histochemistry as a marker for NO synthase, we identified several neuronal and glial cell types as potential NO donor cells. To label NO-responsive target cells, we used the detection of cGMP by an immunocytochemical technique. Incubation of tissue in an NO donor induced cGMP immunoreactivity (cGMP-IR) in individual motoneurons, sensory neurons, and groups of interneurons of the brain and ventral nerve cord. A dynamic pattern of the cellular expression of NADPHd staining and cGMP-IR was observed during embryonic, larval, and prepupal phases. The expression of NADPH diaphorase and cGMP-IR in distinct neuronal populations of the larval central nervous system (CNS) indicates a role of NO in transcellular signaling within the CNS and as potential retrograde messenger across the neuromuscular junction. In addition, the presence of NADPH diaphorase-positive imaginal discs containing NO-responsive sensory neurons suggests that a transcellular NO/cGMP messenger system can operate between cells of epithelial and neuronal phenotype. The discrete cellular resolution of donor and NO-responsive target cells in identifiable cell types will facilitate the genetic, pharmacological, and physiological analysis of NO/cGMP signal transduction in the developing nervous system of Drosophila.
منابع مشابه
Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction.
Nitric oxide (NO) diffuses as short-lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملNitric Oxide Contributes to Behavioral, Cellular, and Developmental Responses to Low Oxygen in Drosophila
A nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is thought to play an important role in mammalian vasodilation during hypoxia. We show that Drosophila utilizes components of this pathway to respond to hypoxia. Hypoxic exposure rapidly induced exploratory behavior in larvae and arrested the cell cycle. These behavioral and cellular responses were diminished by an inhibitor of NO synthase...
متن کاملThe Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila
Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase ...
متن کاملGuanylate cyclase and cyclic GMP-dependent protein kinase regulate agrin signaling at the developing neuromuscular junction.
During formation of the neuromuscular junction (NMJ), agrin secreted by motor axons signals the embryonic muscle cells to organize a postsynaptic apparatus including a dense aggregate of acetylcholine receptors (AChRs). Agrin signaling at the embryonic NMJ requires the activity of nitric oxide synthase (NOS). Common downstream effectors of NOS are guanylate cyclase (GC), which synthesizes cycli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 38 1 شماره
صفحات -
تاریخ انتشار 1999